Data Engineer

쿠버네티스 -스테이트풀셋(statefulset)를 이용해 ElasticSearch 배포

jssvs 2024. 12. 29. 20:51
반응형
오늘은 쿠버네티스의 스테이트풀셋 리소스를 이용해 오픈소스 ElasticSearch 를 배포해보겠습니다.

스테이트풀셋은 디플로이먼트와 성질이 비슷하지만, 파드에 고유한 이름이 부여되고 여러 개의 파드 사이에 순서를 지정해서 실행할 수 있습니다.

ElasticSearch 는 RestAPI 기반으로 json 도큐먼트 데이터를 분산 저장하여, 빠르게 조회할 수 있는 검색 엔진이죠.

빅데이터 엔지니어링 분야에서 kibana, Logstash 와 함께 ELK 로 많이 사용되는 소프트웨어 스택이기도 합니다.

아래 과정을 통해 손쉽게 쿠버네티스로 배포해보겠습니다.

 

 

1. 준비 과정

  • 데이터 영속성을 보장하기 위해 영구 볼륨 (PersistentVolume)생성
  • ElasticSearch 애플리케이션 배포를 위한 스테이트풀셋 생성
  • ElasticSearch 파드를 외부로 노출하기 위한 Service(쿠버네티스의 서비스) 생성
  • curlImage로 기본 파드를 띄우고 Elastic Search 의 서비스 확인

 

2. Statefulset 이용해 ElasticSearch 배포

 
apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: sf-es
  namespace: work
spec:
  replicas: 2
  serviceName: "my-es"
  selector:
    matchLabels:
      app: sf-es
  volumeClaimTemplates:
  - metadata:
      name: vol-es-data
    spec:
      accessModes: ["ReadWriteOnce"]
      storageClassName: gp3
      resources:
        requests:
          storage: 1Gi
  template:
    metadata:
      labels:
        app: sf-es
    spec:
      containers:
      - name: sf-es
        image: docker.elastic.co/elasticsearch/elasticsearch:7.8.0
        env:
        - name: discovery.type
          value: "single-node" # Elasticsearch 노드 타입 설정
        - name: cluster.name
          value: my-es # Elasticsearch 클러스터 이름 설정
        - name: network.host
          value: 0.0.0.0 # 모든 네트워크 인터페이스에서 수신하도록 설정
        ports:
        - containerPort: 9200
          name: es1 # HTTP 포트
        - containerPort: 9300
          name: es2 # Transport 포트
        volumeMounts:
        - name: vol-es-data
          mountPath: /usr/share/elasticsearch/data
        livenessProbe:
          httpGet:
            path: /
            port: 9200
          initialDelaySeconds: 60 # 초기 지연 시간
          periodSeconds: 10 # 주기 시간
          timeoutSeconds: 5 # 타임아웃 시간
          failureThreshold: 3 # 실패 허용 임계값
      initContainers:
      - name: init-container
        image: busybox:latest
        command: ["sh","-c","chown -R 1000:1000 /usr/share/elasticsearch/data"]
        securityContext:
          privileged: true # 루트 권한으로 실행
        volumeMounts:
        - name: vol-es-data
          mountPath: /usr/share/elasticsearch/data # 데이터 볼륨 마운트 경로
---
apiVersion: v1
kind: Service
metadata:
  name: svc-es
  namespace: work
spec:
  clusterIP: None
  ports:
  - port: 9200
    name: es1
  - port: 9300
    name: es2
  selector:
    app: sf-es

 

몇가지 설정에 대한 설명을 추가해보겠습니다.

디플로이먼트와 다르게 VolumeClaimTemplate 속성을 주면서 동적 프로비저닝을 할 수 있구요.

9200,9300 port는 엘라스틱서치가 사용되는 named port 입니다.

livenessProbe 속성값으로 실행된 컨테이너의 서비스 healthcheck 를 파드 차원에서 할 수 있습니다.

서비스 리소스를 생성하면 서비스 이름의 DNS 로 다른 파드에서 접근할 수 있습니다.

 

아래처럼 statefulset 을 배포하구요.

 

kubectl 또는 k9s 로 배포 상태를 확인해줍니다.

앞서 설명한 것 처럼 pod 의 이름에 임의의 문자열로 되어있지 않고, 이름과 인덱스로 고유한 이름을 갖고 있습니다.

 

 

3. 서비스 확인

별도의 파드를 띄워서 조금 전에 띄운 ElasticSearch 파드가 정상적으로 운영되는지, 접근이 되는지 확인해보겠습니다.

apiVersion: v1
kind: Pod
metadata:
  name: pod-conn-test
  namespace: work
spec:
  containers:
  - name: es-conn
    image: curlimages/curl
    command: ["sleep","3600"]

 

ElasticSearch는 RestAPI 기반으로 데이터를 핸들링할 수 있기 때문에, 리눅스 curl 이미지를 이용해 아래와 같이 테스트 파드를 띄웠습니다.

 

 

해당 파드의 컨테이너에 쉘에 진입해서 서비스 정보를 출력해봤습니다.

 

여기서 중요한 것은 ElasticSearch 의 DNS 입니다.

 

제가 만든 서비스의 이름으로 접근이 되는 것을 볼 수 있습니다.

 

 

미리 생성했던 인덱스도 조회해봤습니다.

 

추가적인 API 는 https://www.elastic.co/guide/en/elasticsearch/reference/current/rest-apis.html 에서 확인하실 수 있습니다.

 

 

4. 마치며

과거 프로젝트 진행으로 ElasticSearch를  여러 서버에 멀티클러스터링으로 직접 설치해본 경험도 있고, Docker 를 이용해 구축해본 경험도 있습니다.  쿠버네티스를 알게되고 나서 구축의 편의성을 크게 느낍니다..

느낌적으로 앞으로는 데이터엔지니어링의 서비스 배포 및 관리도 쿠버네티스로 많이 넘어갈 것 같아요.

 

 

오늘은 여기까지 쓰겠습니다.

 

끝 

 

 

반응형